1   /* Copyright 2002-2016 CS Systèmes d'Information
2    * Licensed to CS Systèmes d'Information (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation.semianalytical.dsst.forces;
18  
19  import java.io.NotSerializableException;
20  import java.io.Serializable;
21  import java.util.ArrayList;
22  import java.util.HashMap;
23  import java.util.List;
24  import java.util.Map;
25  import java.util.Set;
26  import java.util.SortedSet;
27  import java.util.TreeMap;
28  
29  import org.hipparchus.exception.LocalizedCoreFormats;
30  import org.hipparchus.util.FastMath;
31  import org.orekit.attitudes.AttitudeProvider;
32  import org.orekit.errors.OrekitException;
33  import org.orekit.forces.gravity.potential.UnnormalizedSphericalHarmonicsProvider;
34  import org.orekit.forces.gravity.potential.UnnormalizedSphericalHarmonicsProvider.UnnormalizedSphericalHarmonics;
35  import org.orekit.orbits.Orbit;
36  import org.orekit.propagation.SpacecraftState;
37  import org.orekit.propagation.events.EventDetector;
38  import org.orekit.propagation.semianalytical.dsst.utilities.AuxiliaryElements;
39  import org.orekit.propagation.semianalytical.dsst.utilities.CjSjCoefficient;
40  import org.orekit.propagation.semianalytical.dsst.utilities.CoefficientsFactory;
41  import org.orekit.propagation.semianalytical.dsst.utilities.CoefficientsFactory.NSKey;
42  import org.orekit.propagation.semianalytical.dsst.utilities.GHIJjsPolynomials;
43  import org.orekit.propagation.semianalytical.dsst.utilities.LnsCoefficients;
44  import org.orekit.propagation.semianalytical.dsst.utilities.ShortPeriodicsInterpolatedCoefficient;
45  import org.orekit.propagation.semianalytical.dsst.utilities.UpperBounds;
46  import org.orekit.propagation.semianalytical.dsst.utilities.hansen.HansenZonalLinear;
47  import org.orekit.time.AbsoluteDate;
48  import org.orekit.utils.TimeSpanMap;
49  
50  /** Zonal contribution to the central body gravitational perturbation.
51   *
52   *   @author Romain Di Costanzo
53   *   @author Pascal Parraud
54   */
55  public class DSSTZonal implements DSSTForceModel {
56  
57      /** Truncation tolerance. */
58      private static final double TRUNCATION_TOLERANCE = 1e-4;
59  
60      /** Number of points for interpolation. */
61      private static final int INTERPOLATION_POINTS = 3;
62  
63      /** Retrograde factor I.
64       *  <p>
65       *  DSST model needs equinoctial orbit as internal representation.
66       *  Classical equinoctial elements have discontinuities when inclination
67       *  is close to zero. In this representation, I = +1. <br>
68       *  To avoid this discontinuity, another representation exists and equinoctial
69       *  elements can be expressed in a different way, called "retrograde" orbit.
70       *  This implies I = -1. <br>
71       *  As Orekit doesn't implement the retrograde orbit, I is always set to +1.
72       *  But for the sake of consistency with the theory, the retrograde factor
73       *  has been kept in the formulas.
74       *  </p>
75       */
76      private static final int I = 1;
77  
78      /** Provider for spherical harmonics. */
79      private final UnnormalizedSphericalHarmonicsProvider provider;
80  
81      /** Maximal degree to consider for harmonics potential. */
82      private final int maxDegree;
83  
84      /** Maximal degree to consider for harmonics potential. */
85      private final int maxDegreeShortPeriodics;
86  
87      /** Maximal degree to consider for harmonics potential in short periodic computations. */
88      private final int maxOrder;
89  
90      /** Factorial. */
91      private final double[] fact;
92  
93      /** Coefficient used to define the mean disturbing function V<sub>ns</sub> coefficient. */
94      private final TreeMap<NSKey, Double> Vns;
95  
96      /** Highest power of the eccentricity to be used in mean elements computations. */
97      private int maxEccPowMeanElements;
98  
99      /** Highest power of the eccentricity to be used in short periodic computations. */
100     private final int maxEccPowShortPeriodics;
101 
102     /** Maximum frequency in true longitude for short periodic computations. */
103     private final int maxFrequencyShortPeriodics;
104 
105     /** Short period terms. */
106     private ZonalShortPeriodicCoefficients zonalSPCoefs;
107 
108     // Equinoctial elements (according to DSST notation)
109     /** a. */
110     private double a;
111     /** ex. */
112     private double k;
113     /** ey. */
114     private double h;
115     /** hx. */
116     private double q;
117     /** hy. */
118     private double p;
119 
120     /** Eccentricity. */
121     private double ecc;
122 
123     /** Direction cosine &alpha. */
124     private double alpha;
125     /** Direction cosine &beta. */
126     private double beta;
127     /** Direction cosine &gamma. */
128     private double gamma;
129 
130     // Common factors for potential computation
131     /** &Chi; = 1 / sqrt(1 - e²) = 1 / B. */
132     private double X;
133     /** &Chi;². */
134     private double XX;
135     /** &Chi;³. */
136     private double XXX;
137     /** 1 / (A * B) .*/
138     private double ooAB;
139     /** B / A .*/
140     private double BoA;
141     /** B / A(1 + B) .*/
142     private double BoABpo;
143     /** -C / (2 * A * B) .*/
144     private double mCo2AB;
145     /** -2 * a / A .*/
146     private double m2aoA;
147     /** μ / a .*/
148     private double muoa;
149     /** R / a .*/
150     private double roa;
151 
152     /** An array that contains the objects needed to build the Hansen coefficients. <br/>
153      * The index is s*/
154     private HansenZonalLinear[] hansenObjects;
155 
156     /** The current value of the U function. <br/>
157      * Needed when computed the short periodic contribution */
158     private double U;
159 
160     /** A = sqrt( μ * a ) = n * a². */
161     private double A;
162     /** B = sqrt( 1 - k² - h² ). */
163     private double B;
164     /** C = 1 + p² + Q². */
165     private double C;
166 
167     /** The mean motion (n). */
168     private double meanMotion;
169 
170     /** h * k. */
171     private double hk;
172     /** k² - h². */
173     private double k2mh2;
174     /** (k² - h²) / 2. */
175     private double k2mh2o2;
176     /** 1 / (n² * a²). */
177     private double oon2a2;
178     /** 1 / (n² * a) . */
179     private double oon2a;
180     /** χ³ / (n² * a). */
181     private double x3on2a;
182     /** χ / (n² * a²). */
183     private double xon2a2;
184     /** (C * χ) / ( 2 * n² * a² ). */
185     private double cxo2n2a2;
186     /** (χ²) / (n² * a² * (χ + 1 ) ). */
187     private double x2on2a2xp1;
188     /** B * B.*/
189     private double BB;
190 
191     /** Simple constructor.
192      * @param provider provider for spherical harmonics
193      * @param maxDegreeShortPeriodics maximum degree to consider for short periodics zonal harmonics potential
194      * (must be between 2 and {@code provider.getMaxDegree()})
195      * @param maxEccPowShortPeriodics maximum power of the eccentricity to be used in short periodic computations
196      * (must be between 0 and {@code maxDegreeShortPeriodics - 1}, but should typically not exceed 4 as higher
197      * values will exceed computer capacity)
198      * @param maxFrequencyShortPeriodics maximum frequency in true longitude for short periodic computations
199      * (must be between 1 and {@code 2 * maxDegreeShortPeriodics + 1})
200      * @exception OrekitException if degrees or powers are out of range
201      * @since 7.2
202      */
203     public DSSTZonal(final UnnormalizedSphericalHarmonicsProvider provider,
204                      final int maxDegreeShortPeriodics,
205                      final int maxEccPowShortPeriodics,
206                      final int maxFrequencyShortPeriodics)
207         throws OrekitException {
208 
209         this.provider  = provider;
210         this.maxDegree = provider.getMaxDegree();
211         this.maxOrder  = provider.getMaxOrder();
212 
213         checkIndexRange(maxDegreeShortPeriodics, 2, maxDegree);
214         this.maxDegreeShortPeriodics = maxDegreeShortPeriodics;
215 
216         checkIndexRange(maxEccPowShortPeriodics, 0, maxDegreeShortPeriodics - 1);
217         this.maxEccPowShortPeriodics = maxEccPowShortPeriodics;
218 
219         checkIndexRange(maxFrequencyShortPeriodics, 1, 2 * maxDegreeShortPeriodics + 1);
220         this.maxFrequencyShortPeriodics = maxFrequencyShortPeriodics;
221 
222         // Vns coefficients
223         this.Vns = CoefficientsFactory.computeVns(maxDegree + 1);
224 
225         // Factorials computation
226         final int maxFact = 2 * maxDegree + 1;
227         this.fact = new double[maxFact];
228         fact[0] = 1.;
229         for (int i = 1; i < maxFact; i++) {
230             fact[i] = i * fact[i - 1];
231         }
232 
233         // Initialize default values
234         this.maxEccPowMeanElements = (maxDegree == 2) ? 0 : Integer.MIN_VALUE;
235 
236     }
237 
238     /** Check an index range.
239      * @param index index value
240      * @param min minimum value for index
241      * @param max maximum value for index
242      * @exception OrekitException if index is out of range
243      */
244     private void checkIndexRange(final int index, final int min, final int max)
245         throws OrekitException {
246         if (index < min || index > max) {
247             throw new OrekitException(LocalizedCoreFormats.OUT_OF_RANGE_SIMPLE, index, min, max);
248         }
249     }
250 
251     /** Get the spherical harmonics provider.
252      *  @return the spherical harmonics provider
253      */
254     public UnnormalizedSphericalHarmonicsProvider getProvider() {
255         return provider;
256     }
257 
258     /** {@inheritDoc}
259      *  <p>
260      *  Computes the highest power of the eccentricity to appear in the truncated
261      *  analytical power series expansion.
262      *  </p>
263      *  <p>
264      *  This method computes the upper value for the central body potential and
265      *  determines the maximal power for the eccentricity producing potential
266      *  terms bigger than a defined tolerance.
267      *  </p>
268      */
269     @Override
270     public List<ShortPeriodTerms> initialize(final AuxiliaryElements aux, final boolean meanOnly)
271         throws OrekitException {
272 
273         computeMeanElementsTruncations(aux);
274 
275         final int maxEccPow;
276         if (!meanOnly) {
277             maxEccPow = FastMath.max(maxEccPowMeanElements, maxEccPowShortPeriodics);
278         } else {
279             maxEccPow = maxEccPowMeanElements;
280         }
281 
282         //Initialize the HansenCoefficient generator
283         this.hansenObjects = new HansenZonalLinear[maxEccPow + 1];
284 
285         for (int s = 0; s <= maxEccPow; s++) {
286             this.hansenObjects[s] = new HansenZonalLinear(maxDegree, s);
287         }
288 
289         final List<ShortPeriodTerms> list = new ArrayList<ShortPeriodTerms>();
290         zonalSPCoefs = new ZonalShortPeriodicCoefficients(maxDegreeShortPeriodics, maxFrequencyShortPeriodics,
291                                                           INTERPOLATION_POINTS,
292                                                           new TimeSpanMap<Slot>(new Slot(maxFrequencyShortPeriodics,
293                                                                                          INTERPOLATION_POINTS)));
294         list.add(zonalSPCoefs);
295         return list;
296 
297     }
298 
299     /** Compute indices truncations for mean elements computations.
300      * @param aux auxiliary elements
301      * @throws OrekitException if an error occurs
302      */
303     private void computeMeanElementsTruncations(final AuxiliaryElements aux) throws OrekitException {
304 
305         //Compute the max eccentricity power for the mean element rate expansion
306         if (maxDegree == 2) {
307             maxEccPowMeanElements = 0;
308         } else {
309             // Initializes specific parameters.
310             initializeStep(aux);
311             final UnnormalizedSphericalHarmonics harmonics = provider.onDate(aux.getDate());
312 
313             // Utilities for truncation
314             final double ax2or = 2. * a / provider.getAe();
315             double xmuran = provider.getMu() / a;
316             // Set a lower bound for eccentricity
317             final double eo2  = FastMath.max(0.0025, ecc / 2.);
318             final double x2o2 = XX / 2.;
319             final double[] eccPwr = new double[maxDegree + 1];
320             final double[] chiPwr = new double[maxDegree + 1];
321             final double[] hafPwr = new double[maxDegree + 1];
322             eccPwr[0] = 1.;
323             chiPwr[0] = X;
324             hafPwr[0] = 1.;
325             for (int i = 1; i <= maxDegree; i++) {
326                 eccPwr[i] = eccPwr[i - 1] * eo2;
327                 chiPwr[i] = chiPwr[i - 1] * x2o2;
328                 hafPwr[i] = hafPwr[i - 1] * 0.5;
329                 xmuran  /= ax2or;
330             }
331 
332             // Set highest power of e and degree of current spherical harmonic.
333             maxEccPowMeanElements = 0;
334             int n = maxDegree;
335             // Loop over n
336             do {
337                 // Set order of current spherical harmonic.
338                 int m = 0;
339                 // Loop over m
340                 do {
341                     // Compute magnitude of current spherical harmonic coefficient.
342                     final double cnm = harmonics.getUnnormalizedCnm(n, m);
343                     final double snm = harmonics.getUnnormalizedSnm(n, m);
344                     final double csnm = FastMath.hypot(cnm, snm);
345                     if (csnm == 0.) break;
346                     // Set magnitude of last spherical harmonic term.
347                     double lastTerm = 0.;
348                     // Set current power of e and related indices.
349                     int nsld2 = (n - maxEccPowMeanElements - 1) / 2;
350                     int l = n - 2 * nsld2;
351                     // Loop over l
352                     double term = 0.;
353                     do {
354                         // Compute magnitude of current spherical harmonic term.
355                         if (m < l) {
356                             term = csnm * xmuran *
357                                     (fact[n - l] / (fact[n - m])) *
358                                     (fact[n + l] / (fact[nsld2] * fact[nsld2 + l])) *
359                                     eccPwr[l] * UpperBounds.getDnl(XX, chiPwr[l], n, l) *
360                                     (UpperBounds.getRnml(gamma, n, l, m, 1, I) + UpperBounds.getRnml(gamma, n, l, m, -1, I));
361                         } else {
362                             term = csnm * xmuran *
363                                     (fact[n + m] / (fact[nsld2] * fact[nsld2 + l])) *
364                                     eccPwr[l] * hafPwr[m - l] * UpperBounds.getDnl(XX, chiPwr[l], n, l) *
365                                     (UpperBounds.getRnml(gamma, n, m, l, 1, I) + UpperBounds.getRnml(gamma, n, m, l, -1, I));
366                         }
367                         // Is the current spherical harmonic term bigger than the truncation tolerance ?
368                         if (term >= TRUNCATION_TOLERANCE) {
369                             maxEccPowMeanElements = l;
370                         } else {
371                             // Is the current term smaller than the last term ?
372                             if (term < lastTerm) {
373                                 break;
374                             }
375                         }
376                         // Proceed to next power of e.
377                         lastTerm = term;
378                         l += 2;
379                         nsld2--;
380                     } while (l < n);
381                     // Is the current spherical harmonic term bigger than the truncation tolerance ?
382                     if (term >= TRUNCATION_TOLERANCE) {
383                         maxEccPowMeanElements = FastMath.min(maxDegree - 2, maxEccPowMeanElements);
384                         return;
385                     }
386                     // Proceed to next order.
387                     m++;
388                 } while (m <= FastMath.min(n, maxOrder));
389                 // Proceed to next degree.
390                 xmuran *= ax2or;
391                 n--;
392             } while (n > maxEccPowMeanElements + 2);
393 
394             maxEccPowMeanElements = FastMath.min(maxDegree - 2, maxEccPowMeanElements);
395         }
396     }
397 
398     /** {@inheritDoc} */
399     @Override
400     public void initializeStep(final AuxiliaryElements aux) throws OrekitException {
401 
402         // Equinoctial elements
403         a = aux.getSma();
404         k = aux.getK();
405         h = aux.getH();
406         q = aux.getQ();
407         p = aux.getP();
408 
409         // Eccentricity
410         ecc = aux.getEcc();
411 
412         // Direction cosines
413         alpha = aux.getAlpha();
414         beta  = aux.getBeta();
415         gamma = aux.getGamma();
416 
417         // Equinoctial coefficients
418         A = aux.getA();
419         B = aux.getB();
420         C = aux.getC();
421 
422         // &Chi; = 1 / B
423         X = 1. / B;
424         XX = X * X;
425         XXX = X * XX;
426         // 1 / AB
427         ooAB = 1. / (A * B);
428         // B / A
429         BoA = B / A;
430         // -C / 2AB
431         mCo2AB = -C * ooAB / 2.;
432         // B / A(1 + B)
433         BoABpo = BoA / (1. + B);
434         // -2 * a / A
435         m2aoA = -2 * a / A;
436         // μ / a
437         muoa = provider.getMu() / a;
438         // R / a
439         roa = provider.getAe() / a;
440 
441         // Mean motion
442         meanMotion = aux.getMeanMotion();
443     }
444 
445     /** {@inheritDoc} */
446     @Override
447     public double[] getMeanElementRate(final SpacecraftState spacecraftState) throws OrekitException {
448         return computeMeanElementRates(spacecraftState.getDate());
449     }
450 
451     /** {@inheritDoc} */
452     @Override
453     public EventDetector[] getEventsDetectors() {
454         return null;
455     }
456 
457     /** Compute the mean element rates.
458      * @param date current date
459      * @return the mean element rates
460      * @throws OrekitException if an error occurs in hansen computation
461      */
462     private double[] computeMeanElementRates(final AbsoluteDate date) throws OrekitException {
463         // Compute potential derivative
464         final double[] dU  = computeUDerivatives(date);
465         final double dUda  = dU[0];
466         final double dUdk  = dU[1];
467         final double dUdh  = dU[2];
468         final double dUdAl = dU[3];
469         final double dUdBe = dU[4];
470         final double dUdGa = dU[5];
471 
472         // Compute cross derivatives [Eq. 2.2-(8)]
473         // U(alpha,gamma) = alpha * dU/dgamma - gamma * dU/dalpha
474         final double UAlphaGamma   = alpha * dUdGa - gamma * dUdAl;
475         // U(beta,gamma) = beta * dU/dgamma - gamma * dU/dbeta
476         final double UBetaGamma    =  beta * dUdGa - gamma * dUdBe;
477         // Common factor
478         final double pUAGmIqUBGoAB = (p * UAlphaGamma - I * q * UBetaGamma) * ooAB;
479 
480         // Compute mean elements rates [Eq. 3.1-(1)]
481         final double da =  0.;
482         final double dh =  BoA * dUdk + k * pUAGmIqUBGoAB;
483         final double dk = -BoA * dUdh - h * pUAGmIqUBGoAB;
484         final double dp =  mCo2AB * UBetaGamma;
485         final double dq =  mCo2AB * UAlphaGamma * I;
486         final double dM =  m2aoA * dUda + BoABpo * (h * dUdh + k * dUdk) + pUAGmIqUBGoAB;
487 
488         return new double[] {da, dk, dh, dq, dp, dM};
489     }
490 
491     /** Compute the derivatives of the gravitational potential U [Eq. 3.1-(6)].
492      *  <p>
493      *  The result is the array
494      *  [dU/da, dU/dk, dU/dh, dU/dα, dU/dβ, dU/dγ]
495      *  </p>
496      *  @param date current date
497      *  @return potential derivatives
498      *  @throws OrekitException if an error occurs in hansen computation
499      */
500     private double[] computeUDerivatives(final AbsoluteDate date) throws OrekitException {
501 
502         final UnnormalizedSphericalHarmonics harmonics = provider.onDate(date);
503 
504         //Reset U
505         U = 0.;
506 
507         // Gs and Hs coefficients
508         final double[][] GsHs = CoefficientsFactory.computeGsHs(k, h, alpha, beta, maxEccPowMeanElements);
509         // Qns coefficients
510         final double[][] Qns  = CoefficientsFactory.computeQns(gamma, maxDegree, maxEccPowMeanElements);
511 
512         final double[] roaPow = new double[maxDegree + 1];
513         roaPow[0] = 1.;
514         for (int i = 1; i <= maxDegree; i++) {
515             roaPow[i] = roa * roaPow[i - 1];
516         }
517 
518         // Potential derivatives
519         double dUda  = 0.;
520         double dUdk  = 0.;
521         double dUdh  = 0.;
522         double dUdAl = 0.;
523         double dUdBe = 0.;
524         double dUdGa = 0.;
525 
526         for (int s = 0; s <= maxEccPowMeanElements; s++) {
527             //Initialize the Hansen roots
528             this.hansenObjects[s].computeInitValues(X);
529 
530             // Get the current Gs coefficient
531             final double gs = GsHs[0][s];
532 
533             // Compute Gs partial derivatives from 3.1-(9)
534             double dGsdh  = 0.;
535             double dGsdk  = 0.;
536             double dGsdAl = 0.;
537             double dGsdBe = 0.;
538             if (s > 0) {
539                 // First get the G(s-1) and the H(s-1) coefficients
540                 final double sxgsm1 = s * GsHs[0][s - 1];
541                 final double sxhsm1 = s * GsHs[1][s - 1];
542                 // Then compute derivatives
543                 dGsdh  = beta  * sxgsm1 - alpha * sxhsm1;
544                 dGsdk  = alpha * sxgsm1 + beta  * sxhsm1;
545                 dGsdAl = k * sxgsm1 - h * sxhsm1;
546                 dGsdBe = h * sxgsm1 + k * sxhsm1;
547             }
548 
549             // Kronecker symbol (2 - delta(0,s))
550             final double d0s = (s == 0) ? 1 : 2;
551 
552             for (int n = s + 2; n <= maxDegree; n++) {
553                 // (n - s) must be even
554                 if ((n - s) % 2 == 0) {
555 
556                     //Extract data from previous computation :
557                     final double kns   = this.hansenObjects[s].getValue(-n - 1, X);
558                     final double dkns  = this.hansenObjects[s].getDerivative(-n - 1, X);
559 
560                     final double vns   = Vns.get(new NSKey(n, s));
561                     final double coef0 = d0s * roaPow[n] * vns * -harmonics.getUnnormalizedCnm(n, 0);
562                     final double coef1 = coef0 * Qns[n][s];
563                     final double coef2 = coef1 * kns;
564                     final double coef3 = coef2 * gs;
565                     // dQns/dGamma = Q(n, s + 1) from Equation 3.1-(8)
566                     final double dqns  = Qns[n][s + 1];
567 
568                     // Compute U
569                     U += coef3;
570                     // Compute dU / da :
571                     dUda += coef3 * (n + 1);
572                     // Compute dU / dEx
573                     dUdk += coef1 * (kns * dGsdk + k * XXX * gs * dkns);
574                     // Compute dU / dEy
575                     dUdh += coef1 * (kns * dGsdh + h * XXX * gs * dkns);
576                     // Compute dU / dAlpha
577                     dUdAl += coef2 * dGsdAl;
578                     // Compute dU / dBeta
579                     dUdBe += coef2 * dGsdBe;
580                     // Compute dU / dGamma
581                     dUdGa += coef0 * kns * dqns * gs;
582 
583                 }
584             }
585         }
586 
587         // Multiply by -(μ / a)
588         U *= -muoa;
589 
590         return new double[] {
591             dUda  *  muoa / a,
592             dUdk  * -muoa,
593             dUdh  * -muoa,
594             dUdAl * -muoa,
595             dUdBe * -muoa,
596             dUdGa * -muoa
597         };
598     }
599 
600     /** {@inheritDoc} */
601     @Override
602     public void registerAttitudeProvider(final AttitudeProvider attitudeProvider) {
603         //nothing is done since this contribution is not sensitive to attitude
604     }
605 
606     /** Check if an index is within the accepted interval.
607      *
608      * @param index the index to check
609      * @param lowerBound the lower bound of the interval
610      * @param upperBound the upper bound of the interval
611      * @return true if the index is between the lower and upper bounds, false otherwise
612      */
613     private boolean isBetween(final int index, final int lowerBound, final int upperBound) {
614         return index >= lowerBound && index <= upperBound;
615     }
616 
617     /** {@inheritDoc} */
618     @Override
619     public void updateShortPeriodTerms(final SpacecraftState ... meanStates)
620         throws OrekitException {
621 
622         final Slot slot = zonalSPCoefs.createSlot(meanStates);
623         for (final SpacecraftState meanState : meanStates) {
624 
625             initializeStep(new AuxiliaryElements(meanState.getOrbit(), I));
626 
627             // h * k.
628             this.hk = h * k;
629             // k² - h².
630             this.k2mh2 = k * k - h * h;
631             // (k² - h²) / 2.
632             this.k2mh2o2 = k2mh2 / 2.;
633             // 1 / (n² * a²) = 1 / (n * A)
634             this.oon2a2 = 1 / (A * meanMotion);
635             // 1 / (n² * a) = a / (n * A)
636             this.oon2a = a * oon2a2;
637             // χ³ / (n² * a)
638             this.x3on2a = XXX * oon2a;
639             // χ / (n² * a²)
640             this.xon2a2 = X * oon2a2;
641             // (C * χ) / ( 2 * n² * a² )
642             this.cxo2n2a2 = xon2a2 * C / 2;
643             // (χ²) / (n² * a² * (χ + 1 ) )
644             this.x2on2a2xp1 = xon2a2 * X / (X + 1);
645             // B * B
646             this.BB = B * B;
647 
648             // Compute rhoj and sigmaj
649             final double[][] rhoSigma = computeRhoSigmaCoefficients(meanState.getDate(), slot);
650 
651             // Compute Di
652             computeDiCoefficients(meanState.getDate(), slot);
653 
654             // generate the Cij and Sij coefficients
655             final FourierCjSjCoefficients cjsj = new FourierCjSjCoefficients(meanState.getDate(),
656                                                                              maxDegreeShortPeriodics,
657                                                                              maxEccPowShortPeriodics,
658                                                                              maxFrequencyShortPeriodics);
659             computeCijSijCoefficients(meanState.getDate(), slot, cjsj, rhoSigma);
660         }
661 
662     }
663 
664     /** Generate the values for the D<sub>i</sub> coefficients.
665      * @param date target date
666      * @param slot slot to which the coefficients belong
667      * @throws OrekitException if an error occurs during the coefficient computation
668      */
669     private void computeDiCoefficients(final AbsoluteDate date, final Slot slot)
670         throws OrekitException {
671         final double[] meanElementRates = computeMeanElementRates(date);
672         final double[] currentDi = new double[6];
673 
674         // Add the coefficients to the interpolation grid
675         for (int i = 0; i < 6; i++) {
676             currentDi[i] = meanElementRates[i] / meanMotion;
677 
678             if (i == 5) {
679                 currentDi[i] += -1.5 * 2 * U * oon2a2;
680             }
681 
682         }
683 
684         slot.di.addGridPoint(date, currentDi);
685 
686     }
687 
688     /**
689      * Generate the values for the C<sub>i</sub><sup>j</sup> and the S<sub>i</sub><sup>j</sup> coefficients.
690      * @param date date of computation
691      * @param slot slot to which the coefficients belong
692      * @param cjsj Fourier coefficients
693      * @param rhoSigma ρ<sub>j</sub> and σ<sub>j</sub>
694      */
695     private void computeCijSijCoefficients(final AbsoluteDate date, final Slot slot,
696                                            final FourierCjSjCoefficients cjsj,
697                                            final double[][] rhoSigma) {
698 
699         final int nMax = maxDegreeShortPeriodics;
700 
701         // The C<sub>i</sub>⁰ coefficients
702         final double[] currentCi0 = new double[] {0., 0., 0., 0., 0., 0.};
703         for (int j = 1; j < slot.cij.length; j++) {
704 
705             // Create local arrays
706             final double[] currentCij = new double[] {0., 0., 0., 0., 0., 0.};
707             final double[] currentSij = new double[] {0., 0., 0., 0., 0., 0.};
708 
709             // j == 1
710             if (j == 1) {
711                 final double coef1 = 4 * k * U - hk * cjsj.getCj(1) + k2mh2o2 * cjsj.getSj(1);
712                 final double coef2 = 4 * h * U + k2mh2o2 * cjsj.getCj(1) + hk * cjsj.getSj(1);
713                 final double coef3 = (k * cjsj.getCj(1) + h * cjsj.getSj(1)) / 4.;
714                 final double coef4 = (8 * U - h * cjsj.getCj(1) + k * cjsj.getSj(1)) / 4.;
715 
716                 //Coefficients for a
717                 currentCij[0] += coef1;
718                 currentSij[0] += coef2;
719 
720                 //Coefficients for k
721                 currentCij[1] += coef4;
722                 currentSij[1] += coef3;
723 
724                 //Coefficients for h
725                 currentCij[2] -= coef3;
726                 currentSij[2] += coef4;
727 
728                 //Coefficients for λ
729                 currentCij[5] -= coef2 / 2;
730                 currentSij[5] += coef1 / 2;
731             }
732 
733             // j == 2
734             if (j == 2) {
735                 final double coef1 = k2mh2 * U;
736                 final double coef2 = 2 * hk * U;
737                 final double coef3 = h * U / 2;
738                 final double coef4 = k * U / 2;
739 
740                 //Coefficients for a
741                 currentCij[0] += coef1;
742                 currentSij[0] += coef2;
743 
744                 //Coefficients for k
745                 currentCij[1] += coef4;
746                 currentSij[1] += coef3;
747 
748                 //Coefficients for h
749                 currentCij[2] -= coef3;
750                 currentSij[2] += coef4;
751 
752                 //Coefficients for λ
753                 currentCij[5] -= coef2 / 2;
754                 currentSij[5] += coef1 / 2;
755             }
756 
757             // j between 1 and 2N-3
758             if (isBetween(j, 1, 2 * nMax - 3)) {
759                 final double coef1 = ( j + 2 ) * (-hk * cjsj.getCj(j + 2) + k2mh2o2 * cjsj.getSj(j + 2));
760                 final double coef2 = ( j + 2 ) * (k2mh2o2 * cjsj.getCj(j + 2) + hk * cjsj.getSj(j + 2));
761                 final double coef3 = ( j + 2 ) * (k * cjsj.getCj(j + 2) + h * cjsj.getSj(j + 2)) / 4;
762                 final double coef4 = ( j + 2 ) * (h * cjsj.getCj(j + 2) - k * cjsj.getSj(j + 2)) / 4;
763 
764                 //Coefficients for a
765                 currentCij[0] += coef1;
766                 currentSij[0] -= coef2;
767 
768                 //Coefficients for k
769                 currentCij[1] += -coef4;
770                 currentSij[1] -= coef3;
771 
772                 //Coefficients for h
773                 currentCij[2] -= coef3;
774                 currentSij[2] += coef4;
775 
776                 //Coefficients for λ
777                 currentCij[5] -= coef2 / 2;
778                 currentSij[5] += -coef1 / 2;
779             }
780 
781             // j between 1 and 2N-2
782             if (isBetween(j, 1, 2 * nMax - 2)) {
783                 final double coef1 = 2 * ( j + 1 ) * (-h * cjsj.getCj(j + 1) + k * cjsj.getSj(j + 1));
784                 final double coef2 = 2 * ( j + 1 ) * (k * cjsj.getCj(j + 1) + h * cjsj.getSj(j + 1));
785                 final double coef3 = ( j + 1 ) * cjsj.getCj(j + 1);
786                 final double coef4 = ( j + 1 ) * cjsj.getSj(j + 1);
787 
788                 //Coefficients for a
789                 currentCij[0] += coef1;
790                 currentSij[0] -= coef2;
791 
792                 //Coefficients for k
793                 currentCij[1] += coef4;
794                 currentSij[1] -= coef3;
795 
796                 //Coefficients for h
797                 currentCij[2] -= coef3;
798                 currentSij[2] -= coef4;
799 
800                 //Coefficients for λ
801                 currentCij[5] -= coef2 / 2;
802                 currentSij[5] += -coef1 / 2;
803             }
804 
805             // j between 2 and 2N
806             if (isBetween(j, 2, 2 * nMax)) {
807                 final double coef1 = 2 * ( j - 1 ) * (h * cjsj.getCj(j - 1) + k * cjsj.getSj(j - 1));
808                 final double coef2 = 2 * ( j - 1 ) * (k * cjsj.getCj(j - 1) - h * cjsj.getSj(j - 1));
809                 final double coef3 = ( j - 1 ) * cjsj.getCj(j - 1);
810                 final double coef4 = ( j - 1 ) * cjsj.getSj(j - 1);
811 
812                 //Coefficients for a
813                 currentCij[0] += coef1;
814                 currentSij[0] -= coef2;
815 
816                 //Coefficients for k
817                 currentCij[1] += coef4;
818                 currentSij[1] -= coef3;
819 
820                 //Coefficients for h
821                 currentCij[2] += coef3;
822                 currentSij[2] += coef4;
823 
824                 //Coefficients for λ
825                 currentCij[5] += coef2 / 2;
826                 currentSij[5] += coef1 / 2;
827             }
828 
829             // j between 3 and 2N + 1
830             if (isBetween(j, 3, 2 * nMax + 1)) {
831                 final double coef1 = ( j - 2 ) * (hk * cjsj.getCj(j - 2) + k2mh2o2 * cjsj.getSj(j - 2));
832                 final double coef2 = ( j - 2 ) * (-k2mh2o2 * cjsj.getCj(j - 2) + hk * cjsj.getSj(j - 2));
833                 final double coef3 = ( j - 2 ) * (k * cjsj.getCj(j - 2) - h * cjsj.getSj(j - 2)) / 4;
834                 final double coef4 = ( j - 2 ) * (h * cjsj.getCj(j - 2) + k * cjsj.getSj(j - 2)) / 4;
835                 final double coef5 = ( j - 2 ) * (k2mh2o2 * cjsj.getCj(j - 2) - hk * cjsj.getSj(j - 2));
836 
837                 //Coefficients for a
838                 currentCij[0] += coef1;
839                 currentSij[0] += coef2;
840 
841                 //Coefficients for k
842                 currentCij[1] += coef4;
843                 currentSij[1] += -coef3;
844 
845                 //Coefficients for h
846                 currentCij[2] += coef3;
847                 currentSij[2] += coef4;
848 
849                 //Coefficients for λ
850                 currentCij[5] += coef5 / 2;
851                 currentSij[5] += coef1 / 2;
852             }
853 
854             //multiply by the common factor
855             //for a (i == 0) -> χ³ / (n² * a)
856             currentCij[0] *= this.x3on2a;
857             currentSij[0] *= this.x3on2a;
858             //for k (i == 1) -> χ / (n² * a²)
859             currentCij[1] *= this.xon2a2;
860             currentSij[1] *= this.xon2a2;
861             //for h (i == 2) -> χ / (n² * a²)
862             currentCij[2] *= this.xon2a2;
863             currentSij[2] *= this.xon2a2;
864             //for λ (i == 5) -> (χ²) / (n² * a² * (χ + 1 ) )
865             currentCij[5] *= this.x2on2a2xp1;
866             currentSij[5] *= this.x2on2a2xp1;
867 
868             // j is between 1 and 2 * N - 1
869             if (isBetween(j, 1, 2 * nMax - 1)) {
870                 // Compute cross derivatives
871                 // Cj(alpha,gamma) = alpha * dC/dgamma - gamma * dC/dalpha
872                 final double CjAlphaGamma   = alpha * cjsj.getdCjdGamma(j) - gamma * cjsj.getdCjdAlpha(j);
873                 // Cj(alpha,beta) = alpha * dC/dbeta - beta * dC/dalpha
874                 final double CjAlphaBeta   = alpha * cjsj.getdCjdBeta(j) - beta * cjsj.getdCjdAlpha(j);
875                 // Cj(beta,gamma) = beta * dC/dgamma - gamma * dC/dbeta
876                 final double CjBetaGamma    =  beta * cjsj.getdCjdGamma(j) - gamma * cjsj.getdCjdBeta(j);
877                 // Cj(h,k) = h * dC/dk - k * dC/dh
878                 final double CjHK   = h * cjsj.getdCjdK(j) - k * cjsj.getdCjdH(j);
879                 // Sj(alpha,gamma) = alpha * dS/dgamma - gamma * dS/dalpha
880                 final double SjAlphaGamma   = alpha * cjsj.getdSjdGamma(j) - gamma * cjsj.getdSjdAlpha(j);
881                 // Sj(alpha,beta) = alpha * dS/dbeta - beta * dS/dalpha
882                 final double SjAlphaBeta   = alpha * cjsj.getdSjdBeta(j) - beta * cjsj.getdSjdAlpha(j);
883                 // Sj(beta,gamma) = beta * dS/dgamma - gamma * dS/dbeta
884                 final double SjBetaGamma    =  beta * cjsj.getdSjdGamma(j) - gamma * cjsj.getdSjdBeta(j);
885                 // Sj(h,k) = h * dS/dk - k * dS/dh
886                 final double SjHK   = h * cjsj.getdSjdK(j) - k * cjsj.getdSjdH(j);
887 
888                 //Coefficients for a
889                 final double coef1 = this.x3on2a * (3 - BB) * j;
890                 currentCij[0] += coef1 * cjsj.getSj(j);
891                 currentSij[0] -= coef1 * cjsj.getCj(j);
892 
893                 //Coefficients for k and h
894                 final double coef2 = p * CjAlphaGamma - I * q * CjBetaGamma;
895                 final double coef3 = p * SjAlphaGamma - I * q * SjBetaGamma;
896                 currentCij[1] -= this.xon2a2 * (h * coef2 + BB * cjsj.getdCjdH(j) - 1.5 * k * j * cjsj.getSj(j));
897                 currentSij[1] -= this.xon2a2 * (h * coef3 + BB * cjsj.getdSjdH(j) + 1.5 * k * j * cjsj.getCj(j));
898                 currentCij[2] += this.xon2a2 * (k * coef2 + BB * cjsj.getdCjdK(j) + 1.5 * h * j * cjsj.getSj(j));
899                 currentSij[2] += this.xon2a2 * (k * coef3 + BB * cjsj.getdSjdK(j) - 1.5 * h * j * cjsj.getCj(j));
900 
901                 //Coefficients for q and p
902                 final double coef4 = CjHK - CjAlphaBeta - j * cjsj.getSj(j);
903                 final double coef5 = SjHK - SjAlphaBeta + j * cjsj.getCj(j);
904                 currentCij[3] = this.cxo2n2a2 * (-I * CjAlphaGamma + q * coef4);
905                 currentSij[3] = this.cxo2n2a2 * (-I * SjAlphaGamma + q * coef5);
906                 currentCij[4] = this.cxo2n2a2 * (-CjBetaGamma + p * coef4);
907                 currentSij[4] = this.cxo2n2a2 * (-SjBetaGamma + p * coef5);
908 
909                 //Coefficients for λ
910                 final double coef6 = h * cjsj.getdCjdH(j) + k * cjsj.getdCjdK(j);
911                 final double coef7 = h * cjsj.getdSjdH(j) + k * cjsj.getdSjdK(j);
912                 currentCij[5] += this.oon2a2 * (-2 * a * cjsj.getdCjdA(j) + coef6 / (X + 1) + X * coef2 - 3 * cjsj.getCj(j));
913                 currentSij[5] += this.oon2a2 * (-2 * a * cjsj.getdSjdA(j) + coef7 / (X + 1) + X * coef3 - 3 * cjsj.getSj(j));
914             }
915 
916             for (int i = 0; i < 6; i++) {
917                 //Add the current coefficients contribution to C<sub>i</sub>⁰
918                 currentCi0[i] -= currentCij[i] * rhoSigma[j][0] + currentSij[i] * rhoSigma[j][1];
919             }
920 
921             // Add the coefficients to the interpolation grid
922             slot.cij[j].addGridPoint(date, currentCij);
923             slot.sij[j].addGridPoint(date, currentSij);
924 
925         }
926 
927         //Add C<sub>i</sub>⁰ to the interpolation grid
928         slot.cij[0].addGridPoint(date, currentCi0);
929 
930     }
931 
932     /**
933      * Compute the auxiliary quantities ρ<sub>j</sub> and σ<sub>j</sub>.
934      * <p>
935      * The expressions used are equations 2.5.3-(4) from the Danielson paper. <br/>
936      *  ρ<sub>j</sub> = (1+jB)(-b)<sup>j</sup>C<sub>j</sub>(k, h) <br/>
937      *  σ<sub>j</sub> = (1+jB)(-b)<sup>j</sup>S<sub>j</sub>(k, h) <br/>
938      * </p>
939      * @param date target date
940      * @param slot slot to which the coefficients belong
941      * @return array containing ρ<sub>j</sub> and σ<sub>j</sub>
942      */
943     private double[][] computeRhoSigmaCoefficients(final AbsoluteDate date, final Slot slot) {
944         final CjSjCoefficient cjsjKH = new CjSjCoefficient(k, h);
945         final double b = 1. / (1 + B);
946 
947         // (-b)<sup>j</sup>
948         double mbtj = 1;
949 
950         final double[][] rhoSigma = new double[slot.cij.length][2];
951         for (int j = 1; j < rhoSigma.length; j++) {
952 
953             //Compute current rho and sigma;
954             mbtj *= -b;
955             final double coef  = (1 + j * B) * mbtj;
956             final double rho   = coef * cjsjKH.getCj(j);
957             final double sigma = coef * cjsjKH.getSj(j);
958 
959             // Add the coefficients to the interpolation grid
960             rhoSigma[j][0] = rho;
961             rhoSigma[j][1] = sigma;
962         }
963 
964         return rhoSigma;
965 
966     }
967 
968     /** The coefficients used to compute the short-periodic zonal contribution.
969      *
970      * <p>
971      * Those coefficients are given in Danielson paper by expressions 4.1-(20) to 4.1.-(25)
972      * </p>
973      * <p>
974      * The coefficients are: <br>
975      * - C<sub>i</sub><sup>j</sup> and S<sub>i</sub><sup>j</sup> <br>
976      * - ρ<sub>j</sub> and σ<sub>j</sub> <br>
977      * - C<sub>i</sub>⁰
978      * </p>
979      *
980      * @author Lucian Barbulescu
981      */
982     private static class ZonalShortPeriodicCoefficients implements ShortPeriodTerms {
983 
984         /** Serializable UID. */
985         private static final long serialVersionUID = 20151118L;
986 
987         /** Maximal degree to consider for harmonics potential. */
988         private final int maxDegreeShortPeriodics;
989 
990         /** Maximum value for j index. */
991         private final int maxFrequencyShortPeriodics;
992 
993         /** Number of points used in the interpolation process. */
994         private final int interpolationPoints;
995 
996         /** All coefficients slots. */
997         private final transient TimeSpanMap<Slot> slots;
998 
999         /** Constructor.
1000          * @param maxDegreeShortPeriodics maximal degree to consider for harmonics potential
1001          * @param maxFrequencyShortPeriodics maximum value for j index
1002          * @param interpolationPoints number of points used in the interpolation process
1003          * @param slots all coefficients slots
1004          */
1005         ZonalShortPeriodicCoefficients(final int maxDegreeShortPeriodics,
1006                                        final int maxFrequencyShortPeriodics, final int interpolationPoints,
1007                                        final TimeSpanMap<Slot> slots) {
1008 
1009             // Save parameters
1010             this.maxDegreeShortPeriodics    = maxDegreeShortPeriodics;
1011             this.maxFrequencyShortPeriodics = maxFrequencyShortPeriodics;
1012             this.interpolationPoints        = interpolationPoints;
1013             this.slots                      = slots;
1014 
1015         }
1016 
1017         /** Get the slot valid for some date.
1018          * @param meanStates mean states defining the slot
1019          * @return slot valid at the specified date
1020          */
1021         public Slot createSlot(final SpacecraftState ... meanStates) {
1022             final Slot         slot  = new Slot(maxFrequencyShortPeriodics, interpolationPoints);
1023             final AbsoluteDate first = meanStates[0].getDate();
1024             final AbsoluteDate last  = meanStates[meanStates.length - 1].getDate();
1025             if (first.compareTo(last) <= 0) {
1026                 slots.addValidAfter(slot, first);
1027             } else {
1028                 slots.addValidBefore(slot, first);
1029             }
1030             return slot;
1031         }
1032 
1033         /** {@inheritDoc} */
1034         @Override
1035         public double[] value(final Orbit meanOrbit) {
1036 
1037             // select the coefficients slot
1038             final Slot slot = slots.get(meanOrbit.getDate());
1039 
1040             // Get the True longitude L
1041             final double L = meanOrbit.getLv();
1042 
1043             // Define maxJ
1044             final int maxJ = 2 * maxDegreeShortPeriodics + 1;
1045 
1046             // Compute the center
1047             final double center = L - meanOrbit.getLM();
1048 
1049             // Initialize short periodic variations
1050             final double[] shortPeriodicVariation = slot.cij[0].value(meanOrbit.getDate());
1051             final double[] d = slot.di.value(meanOrbit.getDate());
1052             for (int i = 0; i < 6; i++) {
1053                 shortPeriodicVariation[i] +=  center * d[i];
1054             }
1055 
1056             for (int j = 1; j <= maxJ; j++) {
1057                 final double[] c = slot.cij[j].value(meanOrbit.getDate());
1058                 final double[] s = slot.sij[j].value(meanOrbit.getDate());
1059                 final double cos = FastMath.cos(j * L);
1060                 final double sin = FastMath.sin(j * L);
1061                 for (int i = 0; i < 6; i++) {
1062                     // add corresponding term to the short periodic variation
1063                     shortPeriodicVariation[i] += c[i] * cos;
1064                     shortPeriodicVariation[i] += s[i] * sin;
1065                 }
1066             }
1067 
1068             return shortPeriodicVariation;
1069         }
1070 
1071         /** {@inheritDoc} */
1072         @Override
1073         public String getCoefficientsKeyPrefix() {
1074             return "DSST-central-body-zonal-";
1075         }
1076 
1077         /** {@inheritDoc}
1078          * <p>
1079          * For zonal terms contributions,there are maxJ cj coefficients,
1080          * maxJ sj coefficients and 2 dj coefficients, where maxJ depends
1081          * on the orbit. The j index is the integer multiplier for the true
1082          * longitude argument in the cj and sj coefficients and the degree
1083          * in the polynomial dj coefficients.
1084          * </p>
1085          */
1086         @Override
1087         public Map<String, double[]> getCoefficients(final AbsoluteDate date, final Set<String> selected)
1088                 throws OrekitException {
1089 
1090             // select the coefficients slot
1091             final Slot slot = slots.get(date);
1092 
1093             final int maxJ = 2 * maxDegreeShortPeriodics + 1;
1094             final Map<String, double[]> coefficients = new HashMap<String, double[]>(2 * maxJ + 2);
1095             storeIfSelected(coefficients, selected, slot.cij[0].value(date), "d", 0);
1096             storeIfSelected(coefficients, selected, slot.di.value(date), "d", 1);
1097             for (int j = 1; j <= maxJ; j++) {
1098                 storeIfSelected(coefficients, selected, slot.cij[j].value(date), "c", j);
1099                 storeIfSelected(coefficients, selected, slot.sij[j].value(date), "s", j);
1100             }
1101             return coefficients;
1102 
1103         }
1104 
1105         /** Put a coefficient in a map if selected.
1106          * @param map map to populate
1107          * @param selected set of coefficients that should be put in the map
1108          * (empty set means all coefficients are selected)
1109          * @param value coefficient value
1110          * @param id coefficient identifier
1111          * @param indices list of coefficient indices
1112          */
1113         private void storeIfSelected(final Map<String, double[]> map, final Set<String> selected,
1114                                      final double[] value, final String id, final int ... indices) {
1115             final StringBuilder keyBuilder = new StringBuilder(getCoefficientsKeyPrefix());
1116             keyBuilder.append(id);
1117             for (int index : indices) {
1118                 keyBuilder.append('[').append(index).append(']');
1119             }
1120             final String key = keyBuilder.toString();
1121             if (selected.isEmpty() || selected.contains(key)) {
1122                 map.put(key, value);
1123             }
1124         }
1125 
1126         /** Replace the instance with a data transfer object for serialization.
1127          * @return data transfer object that will be serialized
1128          * @exception NotSerializableException if an additional state provider is not serializable
1129          */
1130         private Object writeReplace() throws NotSerializableException {
1131 
1132             // slots transitions
1133             final SortedSet<TimeSpanMap.Transition<Slot>> transitions     = slots.getTransitions();
1134             final AbsoluteDate[]                          transitionDates = new AbsoluteDate[transitions.size()];
1135             final Slot[]                                  allSlots        = new Slot[transitions.size() + 1];
1136             int i = 0;
1137             for (final TimeSpanMap.Transition<Slot> transition : transitions) {
1138                 if (i == 0) {
1139                     // slot before the first transition
1140                     allSlots[i] = transition.getBefore();
1141                 }
1142                 if (i < transitionDates.length) {
1143                     transitionDates[i] = transition.getDate();
1144                     allSlots[++i]      = transition.getAfter();
1145                 }
1146             }
1147 
1148             return new DataTransferObject(maxDegreeShortPeriodics,
1149                                           maxFrequencyShortPeriodics, interpolationPoints,
1150                                           transitionDates, allSlots);
1151 
1152         }
1153 
1154 
1155         /** Internal class used only for serialization. */
1156         private static class DataTransferObject implements Serializable {
1157 
1158             /** Serializable UID. */
1159             private static final long serialVersionUID = 20160319L;
1160 
1161             /** Maximal degree to consider for harmonics potential. */
1162             private final int maxDegreeShortPeriodics;
1163 
1164             /** Maximum value for j index. */
1165             private final int maxFrequencyShortPeriodics;
1166 
1167             /** Number of points used in the interpolation process. */
1168             private final int interpolationPoints;
1169 
1170             /** Transitions dates. */
1171             private final AbsoluteDate[] transitionDates;
1172 
1173             /** All slots. */
1174             private final Slot[] allSlots;
1175 
1176             /** Simple constructor.
1177              * @param maxDegreeShortPeriodics maximal degree to consider for harmonics potential
1178              * @param maxFrequencyShortPeriodics maximum value for j index
1179              * @param interpolationPoints number of points used in the interpolation process
1180              * @param transitionDates transitions dates
1181              * @param allSlots all slots
1182              */
1183             DataTransferObject(final int maxDegreeShortPeriodics,
1184                                final int maxFrequencyShortPeriodics, final int interpolationPoints,
1185                                final AbsoluteDate[] transitionDates, final Slot[] allSlots) {
1186                 this.maxDegreeShortPeriodics    = maxDegreeShortPeriodics;
1187                 this.maxFrequencyShortPeriodics = maxFrequencyShortPeriodics;
1188                 this.interpolationPoints        = interpolationPoints;
1189                 this.transitionDates            = transitionDates;
1190                 this.allSlots                   = allSlots;
1191             }
1192 
1193             /** Replace the deserialized data transfer object with a {@link ZonalShortPeriodicCoefficients}.
1194              * @return replacement {@link ZonalShortPeriodicCoefficients}
1195              */
1196             private Object readResolve() {
1197 
1198                 final TimeSpanMap<Slot> slots = new TimeSpanMap<Slot>(allSlots[0]);
1199                 for (int i = 0; i < transitionDates.length; ++i) {
1200                     slots.addValidAfter(allSlots[i + 1], transitionDates[i]);
1201                 }
1202 
1203                 return new ZonalShortPeriodicCoefficients(maxDegreeShortPeriodics,
1204                                                           maxFrequencyShortPeriodics,
1205                                                           interpolationPoints,
1206                                                           slots);
1207 
1208             }
1209 
1210         }
1211 
1212     }
1213 
1214     /** Compute the C<sup>j</sup> and the S<sup>j</sup> coefficients.
1215      *  <p>
1216      *  Those coefficients are given in Danielson paper by expressions 4.1-(13) to 4.1.-(16b)
1217      *  </p>
1218      */
1219     private class FourierCjSjCoefficients {
1220 
1221         /** The G<sub>js</sub>, H<sub>js</sub>, I<sub>js</sub> and J<sub>js</sub> polynomials. */
1222         private final GHIJjsPolynomials ghijCoef;
1223 
1224         /** L<sub>n</sub><sup>s</sup>(γ). */
1225         private final LnsCoefficients lnsCoef;
1226 
1227         /** Maximum possible value for n. */
1228         private final int nMax;
1229 
1230         /** Maximum possible value for s. */
1231         private final int sMax;
1232 
1233         /** Maximum possible value for j. */
1234         private final int jMax;
1235 
1236         /** The C<sup>j</sup> coefficients and their derivatives.
1237          * <p>
1238          * Each column of the matrix contains the following values: <br/>
1239          * - C<sup>j</sup> <br/>
1240          * - dC<sup>j</sup> / da <br/>
1241          * - dC<sup>j</sup> / dh <br/>
1242          * - dC<sup>j</sup> / dk <br/>
1243          * - dC<sup>j</sup> / dα <br/>
1244          * - dC<sup>j</sup> / dβ <br/>
1245          * - dC<sup>j</sup> / dγ <br/>
1246          * </p>
1247          */
1248         private final double[][] cCoef;
1249 
1250         /** The S<sup>j</sup> coefficients and their derivatives.
1251          * <p>
1252          * Each column of the matrix contains the following values: <br/>
1253          * - S<sup>j</sup> <br/>
1254          * - dS<sup>j</sup> / da <br/>
1255          * - dS<sup>j</sup> / dh <br/>
1256          * - dS<sup>j</sup> / dk <br/>
1257          * - dS<sup>j</sup> / dα <br/>
1258          * - dS<sup>j</sup> / dβ <br/>
1259          * - dS<sup>j</sup> / dγ <br/>
1260          * </p>
1261          */
1262         private final double[][] sCoef;
1263 
1264         /** h * &Chi;³. */
1265         private final double hXXX;
1266         /** k * &Chi;³. */
1267         private final double kXXX;
1268 
1269         /** Create a set of C<sup>j</sup> and the S<sup>j</sup> coefficients.
1270          *  @param date the current date
1271          *  @param nMax maximum possible value for n
1272          *  @param sMax maximum possible value for s
1273          *  @param jMax maximum possible value for j
1274          * @throws OrekitException if an error occurs while generating the coefficients
1275          */
1276         FourierCjSjCoefficients(final AbsoluteDate date,
1277                                 final int nMax, final int sMax, final int jMax)
1278                 throws OrekitException {
1279             this.ghijCoef = new GHIJjsPolynomials(k, h, alpha, beta);
1280             // Qns coefficients
1281             final double[][] Qns  = CoefficientsFactory.computeQns(gamma, nMax, nMax);
1282 
1283             this.lnsCoef = new LnsCoefficients(nMax, nMax, Qns, Vns, roa);
1284             this.nMax = nMax;
1285             this.sMax = sMax;
1286             this.jMax = jMax;
1287 
1288             // compute the common factors that depends on the mean elements
1289             this.hXXX = h * XXX;
1290             this.kXXX = k * XXX;
1291 
1292             this.cCoef = new double[7][jMax + 1];
1293             this.sCoef = new double[7][jMax + 1];
1294 
1295             for (int s = 0; s <= sMax; s++) {
1296                 //Initialise the Hansen roots
1297                 hansenObjects[s].computeInitValues(X);
1298             }
1299             generateCoefficients(date);
1300         }
1301 
1302         /** Generate all coefficients.
1303          * @param date the current date
1304          * @throws OrekitException if an error occurs while generating the coefficients
1305          */
1306         private void generateCoefficients(final AbsoluteDate date) throws OrekitException {
1307             final UnnormalizedSphericalHarmonics harmonics = provider.onDate(date);
1308             for (int j = 1; j <= jMax; j++) {
1309 
1310                 //init arrays
1311                 for (int i = 0; i <= 6; i++) {
1312                     cCoef[i][j] = 0.;
1313                     sCoef[i][j] = 0.;
1314                 }
1315 
1316                 if (isBetween(j, 1, nMax - 1)) {
1317 
1318                     //compute first double sum where s: j -> N-1 and n: s+1 -> N
1319                     for (int s = j; s <= FastMath.min(nMax - 1, sMax); s++) {
1320                         // j - s
1321                         final int jms = j - s;
1322                         // Kronecker symbols (2 - delta(0,s-j)) and (2 - delta(0,j-s))
1323                         final int d0smj = (s == j) ? 1 : 2;
1324 
1325                         for (int n = s + 1; n <= nMax; n++) {
1326                             // if n + (j-s) is odd, then the term is equal to zero due to the factor Vn,s-j
1327                             if ((n + jms) % 2 == 0) {
1328                                 // (2 - delta(0,s-j)) * J<sub>n</sub> * K₀<sup>-n-1,s</sup> * L<sub>n</sub><sup>j-s</sup>
1329                                 final double lns = lnsCoef.getLns(n, -jms);
1330                                 final double dlns = lnsCoef.getdLnsdGamma(n, -jms);
1331 
1332                                 final double hjs = ghijCoef.getHjs(s, -jms);
1333                                 final double dHjsdh = ghijCoef.getdHjsdh(s, -jms);
1334                                 final double dHjsdk = ghijCoef.getdHjsdk(s, -jms);
1335                                 final double dHjsdAlpha = ghijCoef.getdHjsdAlpha(s, -jms);
1336                                 final double dHjsdBeta = ghijCoef.getdHjsdBeta(s, -jms);
1337 
1338                                 final double gjs = ghijCoef.getGjs(s, -jms);
1339                                 final double dGjsdh = ghijCoef.getdGjsdh(s, -jms);
1340                                 final double dGjsdk = ghijCoef.getdGjsdk(s, -jms);
1341                                 final double dGjsdAlpha = ghijCoef.getdGjsdAlpha(s, -jms);
1342                                 final double dGjsdBeta = ghijCoef.getdGjsdBeta(s, -jms);
1343 
1344                                 // J<sub>n</sub>
1345                                 final double jn = -harmonics.getUnnormalizedCnm(n, 0);
1346 
1347                                 // K₀<sup>-n-1,s</sup>
1348                                 final double kns   = hansenObjects[s].getValue(-n - 1, X);
1349                                 final double dkns  = hansenObjects[s].getDerivative(-n - 1, X);
1350 
1351                                 final double coef0 = d0smj * jn;
1352                                 final double coef1 = coef0 * lns;
1353                                 final double coef2 = coef1 * kns;
1354                                 final double coef3 = coef2 * hjs;
1355                                 final double coef4 = coef2 * gjs;
1356 
1357                                 // Add the term to the coefficients
1358                                 cCoef[0][j] += coef3;
1359                                 cCoef[1][j] += coef3 * (n + 1);
1360                                 cCoef[2][j] += coef1 * (kns * dHjsdh + hjs * hXXX * dkns);
1361                                 cCoef[3][j] += coef1 * (kns * dHjsdk + hjs * kXXX * dkns);
1362                                 cCoef[4][j] += coef2 * dHjsdAlpha;
1363                                 cCoef[5][j] += coef2 * dHjsdBeta;
1364                                 cCoef[6][j] += coef0 * dlns * kns * hjs;
1365 
1366                                 sCoef[0][j] += coef4;
1367                                 sCoef[1][j] += coef4 * (n + 1);
1368                                 sCoef[2][j] += coef1 * (kns * dGjsdh + gjs * hXXX * dkns);
1369                                 sCoef[3][j] += coef1 * (kns * dGjsdk + gjs * kXXX * dkns);
1370                                 sCoef[4][j] += coef2 * dGjsdAlpha;
1371                                 sCoef[5][j] += coef2 * dGjsdBeta;
1372                                 sCoef[6][j] += coef0 * dlns * kns * gjs;
1373                             }
1374                         }
1375                     }
1376 
1377                     //compute second double sum where s: 0 -> N-j and n: max(j+s, j+1) -> N
1378                     for (int s = 0; s <= FastMath.min(nMax - j, sMax); s++) {
1379                         // j + s
1380                         final int jps = j + s;
1381                         // Kronecker symbols (2 - delta(0,j+s))
1382                         final double d0spj = (s == -j) ? 1 : 2;
1383 
1384                         for (int n = FastMath.max(j + s, j + 1); n <= nMax; n++) {
1385                             // if n + (j+s) is odd, then the term is equal to zero due to the factor Vn,s+j
1386                             if ((n + jps) % 2 == 0) {
1387                                 // (2 - delta(0,s+j)) * J<sub>n</sub> * K₀<sup>-n-1,s</sup> * L<sub>n</sub><sup>j+s</sup>
1388                                 final double lns = lnsCoef.getLns(n, jps);
1389                                 final double dlns = lnsCoef.getdLnsdGamma(n, jps);
1390 
1391                                 final double hjs = ghijCoef.getHjs(s, jps);
1392                                 final double dHjsdh = ghijCoef.getdHjsdh(s, jps);
1393                                 final double dHjsdk = ghijCoef.getdHjsdk(s, jps);
1394                                 final double dHjsdAlpha = ghijCoef.getdHjsdAlpha(s, jps);
1395                                 final double dHjsdBeta = ghijCoef.getdHjsdBeta(s, jps);
1396 
1397                                 final double gjs = ghijCoef.getGjs(s, jps);
1398                                 final double dGjsdh = ghijCoef.getdGjsdh(s, jps);
1399                                 final double dGjsdk = ghijCoef.getdGjsdk(s, jps);
1400                                 final double dGjsdAlpha = ghijCoef.getdGjsdAlpha(s, jps);
1401                                 final double dGjsdBeta = ghijCoef.getdGjsdBeta(s, jps);
1402 
1403                                 // J<sub>n</sub>
1404                                 final double jn = -harmonics.getUnnormalizedCnm(n, 0);
1405 
1406                                 // K₀<sup>-n-1,s</sup>
1407                                 final double kns   = hansenObjects[s].getValue(-n - 1, X);
1408                                 final double dkns  = hansenObjects[s].getDerivative(-n - 1, X);
1409 
1410                                 final double coef0 = d0spj * jn;
1411                                 final double coef1 = coef0 * lns;
1412                                 final double coef2 = coef1 * kns;
1413 
1414                                 final double coef3 = coef2 * hjs;
1415                                 final double coef4 = coef2 * gjs;
1416 
1417                                 // Add the term to the coefficients
1418                                 cCoef[0][j] -= coef3;
1419                                 cCoef[1][j] -= coef3 * (n + 1);
1420                                 cCoef[2][j] -= coef1 * (kns * dHjsdh + hjs * hXXX * dkns);
1421                                 cCoef[3][j] -= coef1 * (kns * dHjsdk + hjs * kXXX * dkns);
1422                                 cCoef[4][j] -= coef2 * dHjsdAlpha;
1423                                 cCoef[5][j] -= coef2 * dHjsdBeta;
1424                                 cCoef[6][j] -= coef0 * dlns * kns * hjs;
1425 
1426                                 sCoef[0][j] += coef4;
1427                                 sCoef[1][j] += coef4 * (n + 1);
1428                                 sCoef[2][j] += coef1 * (kns * dGjsdh + gjs * hXXX * dkns);
1429                                 sCoef[3][j] += coef1 * (kns * dGjsdk + gjs * kXXX * dkns);
1430                                 sCoef[4][j] += coef2 * dGjsdAlpha;
1431                                 sCoef[5][j] += coef2 * dGjsdBeta;
1432                                 sCoef[6][j] += coef0 * dlns * kns * gjs;
1433                             }
1434                         }
1435                     }
1436 
1437                     //compute third double sum where s: 1 -> j and  n: j+1 -> N
1438                     for (int s = 1; s <= FastMath.min(j, sMax); s++) {
1439                         // j - s
1440                         final int jms = j - s;
1441                         // Kronecker symbols (2 - delta(0,s-j)) and (2 - delta(0,j-s))
1442                         final int d0smj = (s == j) ? 1 : 2;
1443 
1444                         for (int n = j + 1; n <= nMax; n++) {
1445                             // if n + (j-s) is odd, then the term is equal to zero due to the factor Vn,s-j
1446                             if ((n + jms) % 2 == 0) {
1447                                 // (2 - delta(0,j-s)) * J<sub>n</sub> * K₀<sup>-n-1,s</sup> * L<sub>n</sub><sup>j-s</sup>
1448                                 final double lns = lnsCoef.getLns(n, jms);
1449                                 final double dlns = lnsCoef.getdLnsdGamma(n, jms);
1450 
1451                                 final double ijs = ghijCoef.getIjs(s, jms);
1452                                 final double dIjsdh = ghijCoef.getdIjsdh(s, jms);
1453                                 final double dIjsdk = ghijCoef.getdIjsdk(s, jms);
1454                                 final double dIjsdAlpha = ghijCoef.getdIjsdAlpha(s, jms);
1455                                 final double dIjsdBeta = ghijCoef.getdIjsdBeta(s, jms);
1456 
1457                                 final double jjs = ghijCoef.getJjs(s, jms);
1458                                 final double dJjsdh = ghijCoef.getdJjsdh(s, jms);
1459                                 final double dJjsdk = ghijCoef.getdJjsdk(s, jms);
1460                                 final double dJjsdAlpha = ghijCoef.getdJjsdAlpha(s, jms);
1461                                 final double dJjsdBeta = ghijCoef.getdJjsdBeta(s, jms);
1462 
1463                                 // J<sub>n</sub>
1464                                 final double jn = -harmonics.getUnnormalizedCnm(n, 0);
1465 
1466                                 // K₀<sup>-n-1,s</sup>
1467                                 final double kns   = hansenObjects[s].getValue(-n - 1, X);
1468                                 final double dkns  = hansenObjects[s].getDerivative(-n - 1, X);
1469 
1470                                 final double coef0 = d0smj * jn;
1471                                 final double coef1 = coef0 * lns;
1472                                 final double coef2 = coef1 * kns;
1473 
1474                                 final double coef3 = coef2 * ijs;
1475                                 final double coef4 = coef2 * jjs;
1476 
1477                                 // Add the term to the coefficients
1478                                 cCoef[0][j] -= coef3;
1479                                 cCoef[1][j] -= coef3 * (n + 1);
1480                                 cCoef[2][j] -= coef1 * (kns * dIjsdh + ijs * hXXX * dkns);
1481                                 cCoef[3][j] -= coef1 * (kns * dIjsdk + ijs * kXXX * dkns);
1482                                 cCoef[4][j] -= coef2 * dIjsdAlpha;
1483                                 cCoef[5][j] -= coef2 * dIjsdBeta;
1484                                 cCoef[6][j] -= coef0 * dlns * kns * ijs;
1485 
1486                                 sCoef[0][j] += coef4;
1487                                 sCoef[1][j] += coef4 * (n + 1);
1488                                 sCoef[2][j] += coef1 * (kns * dJjsdh + jjs * hXXX * dkns);
1489                                 sCoef[3][j] += coef1 * (kns * dJjsdk + jjs * kXXX * dkns);
1490                                 sCoef[4][j] += coef2 * dJjsdAlpha;
1491                                 sCoef[5][j] += coef2 * dJjsdBeta;
1492                                 sCoef[6][j] += coef0 * dlns * kns * jjs;
1493                             }
1494                         }
1495                     }
1496                 }
1497 
1498                 if (isBetween(j, 2, nMax)) {
1499                     //add first term
1500                     // J<sub>j</sub>
1501                     final double jj = -harmonics.getUnnormalizedCnm(j, 0);
1502                     double kns = hansenObjects[0].getValue(-j - 1, X);
1503                     double dkns = hansenObjects[0].getDerivative(-j - 1, X);
1504 
1505                     double lns = lnsCoef.getLns(j, j);
1506                     //dlns is 0 because n == s == j
1507 
1508                     final double hjs = ghijCoef.getHjs(0, j);
1509                     final double dHjsdh = ghijCoef.getdHjsdh(0, j);
1510                     final double dHjsdk = ghijCoef.getdHjsdk(0, j);
1511                     final double dHjsdAlpha = ghijCoef.getdHjsdAlpha(0, j);
1512                     final double dHjsdBeta = ghijCoef.getdHjsdBeta(0, j);
1513 
1514                     final double gjs = ghijCoef.getGjs(0, j);
1515                     final double dGjsdh = ghijCoef.getdGjsdh(0, j);
1516                     final double dGjsdk = ghijCoef.getdGjsdk(0, j);
1517                     final double dGjsdAlpha = ghijCoef.getdGjsdAlpha(0, j);
1518                     final double dGjsdBeta = ghijCoef.getdGjsdBeta(0, j);
1519 
1520                     // 2 * J<sub>j</sub> * K₀<sup>-j-1,0</sup> * L<sub>j</sub><sup>j</sup>
1521                     double coef0 = 2 * jj;
1522                     double coef1 = coef0 * lns;
1523                     double coef2 = coef1 * kns;
1524 
1525                     double coef3 = coef2 * hjs;
1526                     double coef4 = coef2 * gjs;
1527 
1528                     // Add the term to the coefficients
1529                     cCoef[0][j] -= coef3;
1530                     cCoef[1][j] -= coef3 * (j + 1);
1531                     cCoef[2][j] -= coef1 * (kns * dHjsdh + hjs * hXXX * dkns);
1532                     cCoef[3][j] -= coef1 * (kns * dHjsdk + hjs * kXXX * dkns);
1533                     cCoef[4][j] -= coef2 * dHjsdAlpha;
1534                     cCoef[5][j] -= coef2 * dHjsdBeta;
1535                     //no contribution to cCoef[6][j] because dlns is 0
1536 
1537                     sCoef[0][j] += coef4;
1538                     sCoef[1][j] += coef4 * (j + 1);
1539                     sCoef[2][j] += coef1 * (kns * dGjsdh + gjs * hXXX * dkns);
1540                     sCoef[3][j] += coef1 * (kns * dGjsdk + gjs * kXXX * dkns);
1541                     sCoef[4][j] += coef2 * dGjsdAlpha;
1542                     sCoef[5][j] += coef2 * dGjsdBeta;
1543                     //no contribution to sCoef[6][j] because dlns is 0
1544 
1545                     //compute simple sum where s: 1 -> j-1
1546                     for (int s = 1; s <= FastMath.min(j - 1, sMax); s++) {
1547                         // j - s
1548                         final int jms = j - s;
1549                         // Kronecker symbols (2 - delta(0,s-j)) and (2 - delta(0,j-s))
1550                         final int d0smj = (s == j) ? 1 : 2;
1551 
1552                         // if s is odd, then the term is equal to zero due to the factor Vj,s-j
1553                         if (s % 2 == 0) {
1554                             // (2 - delta(0,j-s)) * J<sub>j</sub> * K₀<sup>-j-1,s</sup> * L<sub>j</sub><sup>j-s</sup>
1555                             kns   = hansenObjects[s].getValue(-j - 1, X);
1556                             dkns  = hansenObjects[s].getDerivative(-j - 1, X);
1557 
1558                             lns = lnsCoef.getLns(j, jms);
1559                             final double dlns = lnsCoef.getdLnsdGamma(j, jms);
1560 
1561                             final double ijs = ghijCoef.getIjs(s, jms);
1562                             final double dIjsdh = ghijCoef.getdIjsdh(s, jms);
1563                             final double dIjsdk = ghijCoef.getdIjsdk(s, jms);
1564                             final double dIjsdAlpha = ghijCoef.getdIjsdAlpha(s, jms);
1565                             final double dIjsdBeta = ghijCoef.getdIjsdBeta(s, jms);
1566 
1567                             final double jjs = ghijCoef.getJjs(s, jms);
1568                             final double dJjsdh = ghijCoef.getdJjsdh(s, jms);
1569                             final double dJjsdk = ghijCoef.getdJjsdk(s, jms);
1570                             final double dJjsdAlpha = ghijCoef.getdJjsdAlpha(s, jms);
1571                             final double dJjsdBeta = ghijCoef.getdJjsdBeta(s, jms);
1572 
1573                             coef0 = d0smj * jj;
1574                             coef1 = coef0 * lns;
1575                             coef2 = coef1 * kns;
1576 
1577                             coef3 = coef2 * ijs;
1578                             coef4 = coef2 * jjs;
1579 
1580                             // Add the term to the coefficients
1581                             cCoef[0][j] -= coef3;
1582                             cCoef[1][j] -= coef3 * (j + 1);
1583                             cCoef[2][j] -= coef1 * (kns * dIjsdh + ijs * hXXX * dkns);
1584                             cCoef[3][j] -= coef1 * (kns * dIjsdk + ijs * kXXX * dkns);
1585                             cCoef[4][j] -= coef2 * dIjsdAlpha;
1586                             cCoef[5][j] -= coef2 * dIjsdBeta;
1587                             cCoef[6][j] -= coef0 * dlns * kns * ijs;
1588 
1589                             sCoef[0][j] += coef4;
1590                             sCoef[1][j] += coef4 * (j + 1);
1591                             sCoef[2][j] += coef1 * (kns * dJjsdh + jjs * hXXX * dkns);
1592                             sCoef[3][j] += coef1 * (kns * dJjsdk + jjs * kXXX * dkns);
1593                             sCoef[4][j] += coef2 * dJjsdAlpha;
1594                             sCoef[5][j] += coef2 * dJjsdBeta;
1595                             sCoef[6][j] += coef0 * dlns * kns * jjs;
1596                         }
1597                     }
1598                 }
1599 
1600                 if (isBetween(j, 3, 2 * nMax - 1)) {
1601                     //compute uppercase sigma expressions
1602 
1603                     //min(j-1,N)
1604                     final int minjm1on = FastMath.min(j - 1, nMax);
1605 
1606                     //if j is even
1607                     if (j % 2 == 0) {
1608                         //compute first double sum where s: j-min(j-1,N) -> j/2-1 and n: j-s -> min(j-1,N)
1609                         for (int s = j - minjm1on; s <= FastMath.min(j / 2 - 1, sMax); s++) {
1610                             // j - s
1611                             final int jms = j - s;
1612                             // Kronecker symbols (2 - delta(0,s-j)) and (2 - delta(0,j-s))
1613                             final int d0smj = (s == j) ? 1 : 2;
1614 
1615                             for (int n = j - s; n <= minjm1on; n++) {
1616                                 // if n + (j-s) is odd, then the term is equal to zero due to the factor Vn,s-j
1617                                 if ((n + jms) % 2 == 0) {
1618                                     // (2 - delta(0,j-s)) * J<sub>n</sub> * K₀<sup>-n-1,s</sup> * L<sub>n</sub><sup>j-s</sup>
1619                                     final double lns = lnsCoef.getLns(n, jms);
1620                                     final double dlns = lnsCoef.getdLnsdGamma(n, jms);
1621 
1622                                     final double ijs = ghijCoef.getIjs(s, jms);
1623                                     final double dIjsdh = ghijCoef.getdIjsdh(s, jms);
1624                                     final double dIjsdk = ghijCoef.getdIjsdk(s, jms);
1625                                     final double dIjsdAlpha = ghijCoef.getdIjsdAlpha(s, jms);
1626                                     final double dIjsdBeta = ghijCoef.getdIjsdBeta(s, jms);
1627 
1628                                     final double jjs = ghijCoef.getJjs(s, jms);
1629                                     final double dJjsdh = ghijCoef.getdJjsdh(s, jms);
1630                                     final double dJjsdk = ghijCoef.getdJjsdk(s, jms);
1631                                     final double dJjsdAlpha = ghijCoef.getdJjsdAlpha(s, jms);
1632                                     final double dJjsdBeta = ghijCoef.getdJjsdBeta(s, jms);
1633 
1634                                     // J<sub>n</sub>
1635                                     final double jn = -harmonics.getUnnormalizedCnm(n, 0);
1636 
1637                                     // K₀<sup>-n-1,s</sup>
1638                                     final double kns   = hansenObjects[s].getValue(-n - 1, X);
1639                                     final double dkns  = hansenObjects[s].getDerivative(-n - 1, X);
1640 
1641                                     final double coef0 = d0smj * jn;
1642                                     final double coef1 = coef0 * lns;
1643                                     final double coef2 = coef1 * kns;
1644 
1645                                     final double coef3 = coef2 * ijs;
1646                                     final double coef4 = coef2 * jjs;
1647 
1648                                     // Add the term to the coefficients
1649                                     cCoef[0][j] -= coef3;
1650                                     cCoef[1][j] -= coef3 * (n + 1);
1651                                     cCoef[2][j] -= coef1 * (kns * dIjsdh + ijs * hXXX * dkns);
1652                                     cCoef[3][j] -= coef1 * (kns * dIjsdk + ijs * kXXX * dkns);
1653                                     cCoef[4][j] -= coef2 * dIjsdAlpha;
1654                                     cCoef[5][j] -= coef2 * dIjsdBeta;
1655                                     cCoef[6][j] -= coef0 * dlns * kns * ijs;
1656 
1657                                     sCoef[0][j] += coef4;
1658                                     sCoef[1][j] += coef4 * (n + 1);
1659                                     sCoef[2][j] += coef1 * (kns * dJjsdh + jjs * hXXX * dkns);
1660                                     sCoef[3][j] += coef1 * (kns * dJjsdk + jjs * kXXX * dkns);
1661                                     sCoef[4][j] += coef2 * dJjsdAlpha;
1662                                     sCoef[5][j] += coef2 * dJjsdBeta;
1663                                     sCoef[6][j] += coef0 * dlns * kns * jjs;
1664                                 }
1665                             }
1666                         }
1667 
1668                         //compute second double sum where s: j/2 -> min(j-1,N)-1 and n: s+1 -> min(j-1,N)
1669                         for (int s = j / 2; s <=  FastMath.min(minjm1on - 1, sMax); s++) {
1670                             // j - s
1671                             final int jms = j - s;
1672                             // Kronecker symbols (2 - delta(0,s-j)) and (2 - delta(0,j-s))
1673                             final int d0smj = (s == j) ? 1 : 2;
1674 
1675                             for (int n = s + 1; n <= minjm1on; n++) {
1676                                 // if n + (j-s) is odd, then the term is equal to zero due to the factor Vn,s-j
1677                                 if ((n + jms) % 2 == 0) {
1678                                     // (2 - delta(0,j-s)) * J<sub>n</sub> * K₀<sup>-n-1,s</sup> * L<sub>n</sub><sup>j-s</sup>
1679                                     final double lns = lnsCoef.getLns(n, jms);
1680                                     final double dlns = lnsCoef.getdLnsdGamma(n, jms);
1681 
1682                                     final double ijs = ghijCoef.getIjs(s, jms);
1683                                     final double dIjsdh = ghijCoef.getdIjsdh(s, jms);
1684                                     final double dIjsdk = ghijCoef.getdIjsdk(s, jms);
1685                                     final double dIjsdAlpha = ghijCoef.getdIjsdAlpha(s, jms);
1686                                     final double dIjsdBeta = ghijCoef.getdIjsdBeta(s, jms);
1687 
1688                                     final double jjs = ghijCoef.getJjs(s, jms);
1689                                     final double dJjsdh = ghijCoef.getdJjsdh(s, jms);
1690                                     final double dJjsdk = ghijCoef.getdJjsdk(s, jms);
1691                                     final double dJjsdAlpha = ghijCoef.getdJjsdAlpha(s, jms);
1692                                     final double dJjsdBeta = ghijCoef.getdJjsdBeta(s, jms);
1693 
1694                                     // J<sub>n</sub>
1695                                     final double jn = -harmonics.getUnnormalizedCnm(n, 0);
1696 
1697                                     // K₀<sup>-n-1,s</sup>
1698                                     final double kns   = hansenObjects[s].getValue(-n - 1, X);
1699                                     final double dkns  = hansenObjects[s].getDerivative(-n - 1, X);
1700 
1701                                     final double coef0 = d0smj * jn;
1702                                     final double coef1 = coef0 * lns;
1703                                     final double coef2 = coef1 * kns;
1704 
1705                                     final double coef3 = coef2 * ijs;
1706                                     final double coef4 = coef2 * jjs;
1707 
1708                                     // Add the term to the coefficients
1709                                     cCoef[0][j] -= coef3;
1710                                     cCoef[1][j] -= coef3 * (n + 1);
1711                                     cCoef[2][j] -= coef1 * (kns * dIjsdh + ijs * hXXX * dkns);
1712                                     cCoef[3][j] -= coef1 * (kns * dIjsdk + ijs * kXXX * dkns);
1713                                     cCoef[4][j] -= coef2 * dIjsdAlpha;
1714                                     cCoef[5][j] -= coef2 * dIjsdBeta;
1715                                     cCoef[6][j] -= coef0 * dlns * kns * ijs;
1716 
1717                                     sCoef[0][j] += coef4;
1718                                     sCoef[1][j] += coef4 * (n + 1);
1719                                     sCoef[2][j] += coef1 * (kns * dJjsdh + jjs * hXXX * dkns);
1720                                     sCoef[3][j] += coef1 * (kns * dJjsdk + jjs * kXXX * dkns);
1721                                     sCoef[4][j] += coef2 * dJjsdAlpha;
1722                                     sCoef[5][j] += coef2 * dJjsdBeta;
1723                                     sCoef[6][j] += coef0 * dlns * kns * jjs;
1724                                 }
1725                             }
1726                         }
1727                     }
1728 
1729                     //if j is odd
1730                     else {
1731                         //compute first double sum where s: (j-1)/2 -> min(j-1,N)-1 and n: s+1 -> min(j-1,N)
1732                         for (int s = (j - 1) / 2; s <= FastMath.min(minjm1on - 1, sMax); s++) {
1733                             // j - s
1734                             final int jms = j - s;
1735                             // Kronecker symbols (2 - delta(0,s-j)) and (2 - delta(0,j-s))
1736                             final int d0smj = (s == j) ? 1 : 2;
1737 
1738                             for (int n = s + 1; n <= minjm1on; n++) {
1739                                 // if n + (j-s) is odd, then the term is equal to zero due to the factor Vn,s-j
1740                                 if ((n + jms) % 2 == 0) {
1741                                     // (2 - delta(0,j-s)) * J<sub>n</sub> * K₀<sup>-n-1,s</sup> * L<sub>n</sub><sup>j-s</sup>
1742                                     final double lns = lnsCoef.getLns(n, jms);
1743                                     final double dlns = lnsCoef.getdLnsdGamma(n, jms);
1744 
1745                                     final double ijs = ghijCoef.getIjs(s, jms);
1746                                     final double dIjsdh = ghijCoef.getdIjsdh(s, jms);
1747                                     final double dIjsdk = ghijCoef.getdIjsdk(s, jms);
1748                                     final double dIjsdAlpha = ghijCoef.getdIjsdAlpha(s, jms);
1749                                     final double dIjsdBeta = ghijCoef.getdIjsdBeta(s, jms);
1750 
1751                                     final double jjs = ghijCoef.getJjs(s, jms);
1752                                     final double dJjsdh = ghijCoef.getdJjsdh(s, jms);
1753                                     final double dJjsdk = ghijCoef.getdJjsdk(s, jms);
1754                                     final double dJjsdAlpha = ghijCoef.getdJjsdAlpha(s, jms);
1755                                     final double dJjsdBeta = ghijCoef.getdJjsdBeta(s, jms);
1756 
1757                                     // J<sub>n</sub>
1758                                     final double jn = -harmonics.getUnnormalizedCnm(n, 0);
1759 
1760                                     // K₀<sup>-n-1,s</sup>
1761 
1762                                     final double kns = hansenObjects[s].getValue(-n - 1, X);
1763                                     final double dkns  = hansenObjects[s].getDerivative(-n - 1, X);
1764 
1765                                     final double coef0 = d0smj * jn;
1766                                     final double coef1 = coef0 * lns;
1767                                     final double coef2 = coef1 * kns;
1768 
1769                                     final double coef3 = coef2 * ijs;
1770                                     final double coef4 = coef2 * jjs;
1771 
1772                                     // Add the term to the coefficients
1773                                     cCoef[0][j] -= coef3;
1774                                     cCoef[1][j] -= coef3 * (n + 1);
1775                                     cCoef[2][j] -= coef1 * (kns * dIjsdh + ijs * hXXX * dkns);
1776                                     cCoef[3][j] -= coef1 * (kns * dIjsdk + ijs * kXXX * dkns);
1777                                     cCoef[4][j] -= coef2 * dIjsdAlpha;
1778                                     cCoef[5][j] -= coef2 * dIjsdBeta;
1779                                     cCoef[6][j] -= coef0 * dlns * kns * ijs;
1780 
1781                                     sCoef[0][j] += coef4;
1782                                     sCoef[1][j] += coef4 * (n + 1);
1783                                     sCoef[2][j] += coef1 * (kns * dJjsdh + jjs * hXXX * dkns);
1784                                     sCoef[3][j] += coef1 * (kns * dJjsdk + jjs * kXXX * dkns);
1785                                     sCoef[4][j] += coef2 * dJjsdAlpha;
1786                                     sCoef[5][j] += coef2 * dJjsdBeta;
1787                                     sCoef[6][j] += coef0 * dlns * kns * jjs;
1788                                 }
1789                             }
1790                         }
1791 
1792                         //the second double sum is added only if N >= 4 and j between 5 and 2*N-3
1793                         if (nMax >= 4 && isBetween(j, 5, 2 * nMax - 3)) {
1794                             //compute second double sum where s: j-min(j-1,N) -> (j-3)/2 and n: j-s -> min(j-1,N)
1795                             for (int s = j - minjm1on; s <= FastMath.min((j - 3) / 2, sMax); s++) {
1796                                 // j - s
1797                                 final int jms = j - s;
1798                                 // Kronecker symbols (2 - delta(0,s-j)) and (2 - delta(0,j-s))
1799                                 final int d0smj = (s == j) ? 1 : 2;
1800 
1801                                 for (int n = j - s; n <= minjm1on; n++) {
1802                                     // if n + (j-s) is odd, then the term is equal to zero due to the factor Vn,s-j
1803                                     if ((n + jms) % 2 == 0) {
1804                                         // (2 - delta(0,j-s)) * J<sub>n</sub> * K₀<sup>-n-1,s</sup> * L<sub>n</sub><sup>j-s</sup>
1805                                         final double lns = lnsCoef.getLns(n, jms);
1806                                         final double dlns = lnsCoef.getdLnsdGamma(n, jms);
1807 
1808                                         final double ijs = ghijCoef.getIjs(s, jms);
1809                                         final double dIjsdh = ghijCoef.getdIjsdh(s, jms);
1810                                         final double dIjsdk = ghijCoef.getdIjsdk(s, jms);
1811                                         final double dIjsdAlpha = ghijCoef.getdIjsdAlpha(s, jms);
1812                                         final double dIjsdBeta = ghijCoef.getdIjsdBeta(s, jms);
1813 
1814                                         final double jjs = ghijCoef.getJjs(s, jms);
1815                                         final double dJjsdh = ghijCoef.getdJjsdh(s, jms);
1816                                         final double dJjsdk = ghijCoef.getdJjsdk(s, jms);
1817                                         final double dJjsdAlpha = ghijCoef.getdJjsdAlpha(s, jms);
1818                                         final double dJjsdBeta = ghijCoef.getdJjsdBeta(s, jms);
1819 
1820                                         // J<sub>n</sub>
1821                                         final double jn = -harmonics.getUnnormalizedCnm(n, 0);
1822 
1823                                         // K₀<sup>-n-1,s</sup>
1824                                         final double kns   = hansenObjects[s].getValue(-n - 1, X);
1825                                         final double dkns  = hansenObjects[s].getDerivative(-n - 1, X);
1826 
1827                                         final double coef0 = d0smj * jn;
1828                                         final double coef1 = coef0 * lns;
1829                                         final double coef2 = coef1 * kns;
1830 
1831                                         final double coef3 = coef2 * ijs;
1832                                         final double coef4 = coef2 * jjs;
1833 
1834                                         // Add the term to the coefficients
1835                                         cCoef[0][j] -= coef3;
1836                                         cCoef[1][j] -= coef3 * (n + 1);
1837                                         cCoef[2][j] -= coef1 * (kns * dIjsdh + ijs * hXXX * dkns);
1838                                         cCoef[3][j] -= coef1 * (kns * dIjsdk + ijs * kXXX * dkns);
1839                                         cCoef[4][j] -= coef2 * dIjsdAlpha;
1840                                         cCoef[5][j] -= coef2 * dIjsdBeta;
1841                                         cCoef[6][j] -= coef0 * dlns * kns * ijs;
1842 
1843                                         sCoef[0][j] += coef4;
1844                                         sCoef[1][j] += coef4 * (n + 1);
1845                                         sCoef[2][j] += coef1 * (kns * dJjsdh + jjs * hXXX * dkns);
1846                                         sCoef[3][j] += coef1 * (kns * dJjsdk + jjs * kXXX * dkns);
1847                                         sCoef[4][j] += coef2 * dJjsdAlpha;
1848                                         sCoef[5][j] += coef2 * dJjsdBeta;
1849                                         sCoef[6][j] += coef0 * dlns * kns * jjs;
1850                                     }
1851                                 }
1852                             }
1853                         }
1854                     }
1855                 }
1856 
1857                 cCoef[0][j] *= -muoa / j;
1858                 cCoef[1][j] *=  muoa / ( j * a );
1859                 cCoef[2][j] *= -muoa / j;
1860                 cCoef[3][j] *= -muoa / j;
1861                 cCoef[4][j] *= -muoa / j;
1862                 cCoef[5][j] *= -muoa / j;
1863                 cCoef[6][j] *= -muoa / j;
1864 
1865                 sCoef[0][j] *= -muoa / j;
1866                 sCoef[1][j] *=  muoa / ( j * a );
1867                 sCoef[2][j] *= -muoa / j;
1868                 sCoef[3][j] *= -muoa / j;
1869                 sCoef[4][j] *= -muoa / j;
1870                 sCoef[5][j] *= -muoa / j;
1871                 sCoef[6][j] *= -muoa / j;
1872 
1873             }
1874         }
1875 
1876         /** Check if an index is within the accepted interval.
1877          *
1878          * @param index the index to check
1879          * @param lowerBound the lower bound of the interval
1880          * @param upperBound the upper bound of the interval
1881          * @return true if the index is between the lower and upper bounds, false otherwise
1882          */
1883         private boolean isBetween(final int index, final int lowerBound, final int upperBound) {
1884             return index >= lowerBound && index <= upperBound;
1885         }
1886 
1887         /**Get the value of C<sup>j</sup>.
1888          *
1889          * @param j j index
1890          * @return C<sup>j</sup>
1891          */
1892         public double getCj(final int j) {
1893             return cCoef[0][j];
1894         }
1895 
1896         /**Get the value of dC<sup>j</sup> / da.
1897          *
1898          * @param j j index
1899          * @return dC<sup>j</sup> / da
1900          */
1901         public double getdCjdA(final int j) {
1902             return cCoef[1][j];
1903         }
1904 
1905         /**Get the value of dC<sup>j</sup> / dh.
1906          *
1907          * @param j j index
1908          * @return dC<sup>j</sup> / dh
1909          */
1910         public double getdCjdH(final int j) {
1911             return cCoef[2][j];
1912         }
1913 
1914         /**Get the value of dC<sup>j</sup> / dk.
1915          *
1916          * @param j j index
1917          * @return dC<sup>j</sup> / dk
1918          */
1919         public double getdCjdK(final int j) {
1920             return cCoef[3][j];
1921         }
1922 
1923         /**Get the value of dC<sup>j</sup> / dα.
1924          *
1925          * @param j j index
1926          * @return dC<sup>j</sup> / dα
1927          */
1928         public double getdCjdAlpha(final int j) {
1929             return cCoef[4][j];
1930         }
1931 
1932         /**Get the value of dC<sup>j</sup> / dβ.
1933          *
1934          * @param j j index
1935          * @return dC<sup>j</sup> / dβ
1936          */
1937         public double getdCjdBeta(final int j) {
1938             return cCoef[5][j];
1939         }
1940 
1941         /**Get the value of dC<sup>j</sup> / dγ.
1942          *
1943          * @param j j index
1944          * @return dC<sup>j</sup> / dγ
1945          */
1946         public double getdCjdGamma(final int j) {
1947             return cCoef[6][j];
1948         }
1949 
1950         /**Get the value of S<sup>j</sup>.
1951          *
1952          * @param j j index
1953          * @return S<sup>j</sup>
1954          */
1955         public double getSj(final int j) {
1956             return sCoef[0][j];
1957         }
1958 
1959         /**Get the value of dS<sup>j</sup> / da.
1960          *
1961          * @param j j index
1962          * @return dS<sup>j</sup> / da
1963          */
1964         public double getdSjdA(final int j) {
1965             return sCoef[1][j];
1966         }
1967 
1968         /**Get the value of dS<sup>j</sup> / dh.
1969          *
1970          * @param j j index
1971          * @return dS<sup>j</sup> / dh
1972          */
1973         public double getdSjdH(final int j) {
1974             return sCoef[2][j];
1975         }
1976 
1977         /**Get the value of dS<sup>j</sup> / dk.
1978          *
1979          * @param j j index
1980          * @return dS<sup>j</sup> / dk
1981          */
1982         public double getdSjdK(final int j) {
1983             return sCoef[3][j];
1984         }
1985 
1986         /**Get the value of dS<sup>j</sup> / dα.
1987          *
1988          * @param j j index
1989          * @return dS<sup>j</sup> / dα
1990          */
1991         public double getdSjdAlpha(final int j) {
1992             return sCoef[4][j];
1993         }
1994 
1995         /**Get the value of dS<sup>j</sup> / dβ.
1996          *
1997          * @param j j index
1998          * @return dS<sup>j</sup> / dβ
1999          */
2000         public double getdSjdBeta(final int j) {
2001             return sCoef[5][j];
2002         }
2003 
2004         /**Get the value of dS<sup>j</sup> /  dγ.
2005          *
2006          * @param j j index
2007          * @return dS<sup>j</sup> /  dγ
2008          */
2009         public double getdSjdGamma(final int j) {
2010             return sCoef[6][j];
2011         }
2012     }
2013 
2014     /** Coefficients valid for one time slot. */
2015     private static class Slot implements Serializable {
2016 
2017         /** Serializable UID. */
2018         private static final long serialVersionUID = 20160319L;
2019 
2020         /**The coefficients D<sub>i</sub>.
2021          * <p>
2022          * i corresponds to the equinoctial element, as follows:
2023          * - i=0 for a <br/>
2024          * - i=1 for k <br/>
2025          * - i=2 for h <br/>
2026          * - i=3 for q <br/>
2027          * - i=4 for p <br/>
2028          * - i=5 for λ <br/>
2029          * </p>
2030          */
2031         private final ShortPeriodicsInterpolatedCoefficient di;
2032 
2033         /** The coefficients C<sub>i</sub><sup>j</sup>.
2034          * <p>
2035          * The constant term C<sub>i</sub>⁰ is also stored in this variable at index j = 0 <br>
2036          * The index order is cij[j][i] <br/>
2037          * i corresponds to the equinoctial element, as follows: <br/>
2038          * - i=0 for a <br/>
2039          * - i=1 for k <br/>
2040          * - i=2 for h <br/>
2041          * - i=3 for q <br/>
2042          * - i=4 for p <br/>
2043          * - i=5 for λ <br/>
2044          * </p>
2045          */
2046         private final ShortPeriodicsInterpolatedCoefficient[] cij;
2047 
2048         /** The coefficients S<sub>i</sub><sup>j</sup>.
2049          * <p>
2050          * The index order is sij[j][i] <br/>
2051          * i corresponds to the equinoctial element, as follows: <br/>
2052          * - i=0 for a <br/>
2053          * - i=1 for k <br/>
2054          * - i=2 for h <br/>
2055          * - i=3 for q <br/>
2056          * - i=4 for p <br/>
2057          * - i=5 for λ <br/>
2058          * </p>
2059          */
2060         private final ShortPeriodicsInterpolatedCoefficient[] sij;
2061 
2062         /** Simple constructor.
2063          *  @param maxFrequencyShortPeriodics maximum value for j index
2064          *  @param interpolationPoints number of points used in the interpolation process
2065          */
2066         Slot(final int maxFrequencyShortPeriodics, final int interpolationPoints) {
2067 
2068             final int rows = maxFrequencyShortPeriodics + 1;
2069             di  = new ShortPeriodicsInterpolatedCoefficient(interpolationPoints);
2070             cij = new ShortPeriodicsInterpolatedCoefficient[rows];
2071             sij = new ShortPeriodicsInterpolatedCoefficient[rows];
2072 
2073             //Initialize the arrays
2074             for (int j = 0; j <= maxFrequencyShortPeriodics; j++) {
2075                 cij[j] = new ShortPeriodicsInterpolatedCoefficient(interpolationPoints);
2076                 sij[j] = new ShortPeriodicsInterpolatedCoefficient(interpolationPoints);
2077             }
2078 
2079         }
2080 
2081     }
2082 
2083 }